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Abstract. The nature of the critical point of the Anderson transition in high magnetic fields is
discussed with an emphasis on scale invariance and universality of the critical exponent. Special
attention is paid to the distribution function of the conductance which becomes size and model
independent at the critical point. The fractal properties of the wave function which are related
to scale invariance are also discussed.

1. Introduction

The Anderson transition (AT) has been attracting the attention of condensed matter physicists
for more than four decades [1, 2]. The AT is a zero-temperature quantum phase transition
separating metallic and insulating phases which is induced by a spatially fluctuating random
potential. The transition can be described using the scaling theory of localization [3, 4]. Near
the critical point in three-dimensional (3D) systems, behaviour which is typical of quantum
phase transitions is observed for quantities such as the conductanceg and correlation length
ξ . For example, as we approach the critical point by changing a parameterw, such as the
strength of disorder or the Fermi energy, the correlation length diverges as

ξ ∼ |w − wc|−ν (1)

while the conductivityσ vanishes from the metallic side according to the power law

σ ∼ |w − wc|s . (2)

If we approach the transition from the insulating side, then the dielectric constantε diverges
as

ε ∼ |w − wc|−s ′ . (3)

As in the critical phenomena of magnetic systems, the exponentsν, s and s ′ are not
independent but are related [5]:

s = (d − 2)ν s ′ = 2ν. (4)

A knowledge ofν is enough to fix the critical exponentss and s ′. These latter exponents
can be measured experimentally though there has been controversy concerning the correct
values [6]. It is thus important to have a precise theoretical estimate ofν in order to compare
with the experiments.
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The value ofν is expected to be universal, i.e., independent of the details of the model
and dependent only on basic symmetries such as that under the operation of time reversal.
The classification of the critical behaviour according to the symmetries of the system was
predicted from field-theoretic considerations [7, 8], and recently verified numerically [9].

At the Anderson transition the correlation length diverges and the wave function becomes
scale invariant. This invariance is characterized by a fractal dimensionD2. This is reflected
in the size independence of the distribution function of the conductance [9, 10] as well as
the statistics of the energy levels [11–15].

In this paper we report a numerical simulation of the wave-function dynamics at the
critical point for the tight-binding model in a magnetic field. We have observed anomalous
diffusion and estimated the fractal dimensionality. The universality of the distribution
function of the conductance at the critical point has also been verified. The final section is
devoted to a summary of our results and concluding remarks in connection with experiments.

2. Anderson transition in magnetic fields

Magnetic fields have two effects on the Anderson transition. One is to delocalize the
electronic states by breaking time-reversal symmetry, and the other is to localize the
electronic states by shrinking the wave function due to cyclotron motion. Which of these
two dominates depends on the situation.

The tight-binding Hamiltonian which incorporates the effect of magnetic fields is given
by

H = V
∑
〈i,j〉

exp(iθi,j )C
†
i Cj +

∑
i

WiC
†
i Ci (5)

whereC†i (Ci) denotes a creation (annihilation) operator of an electron at the sitei. The
energies{Wi} are distributed independently and uniformly in the range [−W/2,W/2]. By
fixing the Fermi energyE to be, e.g.,E = 0 while increasingW , the system is driven to
be an insulator atW = Wc whereWc is the critical disorder. The Peierls phase factors
exp(iθi,j ) describe magnetic fields. The hopping amplitudeV is assumed to be the energy
unit, V = 1. We assume a simple cubic 3D lattice for simplicity, and all of the length
scales are measured in units of its lattice constanta.

In the absence of magnetic fields, the AT occurs at a critical disorderWc ' 16.5 at the
centre of the band,E = 0. The critical exponentν has been estimated asν = 1.59± 0.03
[9]. Applying strong magnetic fields to the tight-binding model, it has been shown that the
value of the critical point as well as the scaling curve change. In a magnetic field the value
of ν is estimated to be 1.43± 0.04 [9]. The exponent is not dependent on the strength of
the magnetic fields [9] and is unchanged in random magnetic fields which can be realized
by assuming a random phase for the hopping elements [16].

Another model which describes the 3D Anderson transition in a high magnetic field is a
stack of two-dimensional layers with a strong quantizing field applied perpendicular to the
plane [17]. In purely two-dimensional systems, the quantum Hall effect (QHE) occurs. The
electronic states are delocalized only at the centre of each Landau band. In this case the
critical exponentνQHE is estimated to be close to 7/3 [18]. The introduction of interlayer
hopping between the layers makes the delocalized region finite in energy, and changes the
exponent to 1.45± 0.15 [19]. This is close to the value of 1.43 given above, in agreement
with universality of the AT. Universality has also been verified for changes in the transfer
integral between the layers [17].
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There is another interesting aspect of the stacked-layer model. If we impose Dirichlet
boundary conditions instead of periodic boundary conditions, we find magnetic edge states
circulating along the perimeter of the two-dimensional layer. Stacking the layers along the
z-direction, we then have novel electronic states where the electron can hop both in the+z-
and−z-directions but can rotate only in the clockwise or anticlockwise direction (which is
determined by the direction of the field) in thex–y plane. The edge states which compose
this strange ‘sheath’ are critical [19, 20]. That is to say, as we increase the linear dimension
of the plane, sayL, the localization length in thez-directionξ‖ also increases in proportion
to L and diverges in the thermodynamic limit.

3. Critical behaviour

3.1. Anomalous diffusion and fractal dimensionality

In the metallic regime, the electron diffuses and the mean squared diffusion radius

r2(t) ≡ 〈t |r2|t〉
is proportional to the timet :

r2(t) = 2dDt (6)

whereD is the diffusion coefficient and the average is taken over disorder. In the insulating
regime where the wave functionψ is localized as exp(−r/ξ), the squared diffusion radius
saturates at [21]

lim
t→∞ r

2(t) = d(d + 1)

4
ξ2. (7)

To understand the intermediate region we use the renormalization group, from which

r2(t) = b2f ((w − wc)b1/ν, tb−z)

whereb is the scale factor in the renormalization group andz is the dynamical exponent.
The timet is measured in units of ¯h/V . From this equation we deduce the scaling form [22]

r2(t) = t2/zF (t1/zν(w − wc)). (8)

A similar relation holds for classical percolation theory [23]. On the metallic side of the
transition we expect at sufficiently long times a linear-in-t growth of the mean squared
radius in accordance with (6). For this to occur, we must haveF(x) ∼ xs when x � 1
with s = (z− 2)ν. Thus on the metallic side of the transition at long times, we have

r2(t) ∼ |w − wc|s t.
Since according to the Einstein relationσ ∼ D, we see thats is indeed the exponent in (2).
For non-interacting electronsz = d, and we recover the Wegner scaling law [5]

s = (d − 2)ν.

On the insulating side of the transition we expect (7) to hold at long times. Imposing this
in (8) leads to

r2(t) ∼ |w − wc|−2ν ∼ ξ2

confirming thatν in (8) is indeed the exponent governing the divergence of the localization
length. Exactly at the critical point,w = wc, and we see that the square diffusion length
grows as

r2(t) ∼ t2/3. (9)
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Another quantity which can be used to investigate the dynamics of the wave function at the
critical point is the return probability

C(t) ≡ 1

t

∫ t

0
dt ′ |〈t ′|0〉|2 (10)

which is related to the fractal dimensionality of the wave functionD2 as

C(t) ∼ t−D2/d . (11)

Figure 1. The squared diffusion lengthr2(t) versus timet . The solid line is the fit tot2/3.
Inset: a double-logarithmic plot of the return probabilityC(t) versust . The line representing
the power lawt−0.57 is a guide to the eyes.

Direct diagonalization of the 3D systems requires huge CPU power, especially when
the Hamiltonian is complex, because of the applied magnetic fields. Instead of carrying out
direct diagonalization, we have used the equation-of-motion method to study the diffusion
process. We prepare a wave packet|0〉 with the energyE located at the centre of the system,
and numerically calculate the time evolution using|t〉 = e−iHt/h̄|0〉. When evaluating the
factor e−iHt/h̄, we use the decomposition formula for exponential operators [24, 25]. In
figure 1, we show the results for̄r2(t) calculated for a 59× 59× 59 cubic lattice. The
magnetic field is parallel to thez-direction and the magnitude of the flux per unit cell is
0.1 times the flux quantum. The critical disorder in this case isWc = 17.8 [26]. We see
clearly thet2/3-law for r2(t), confirming the validity of the scaling equation (8) as well as
the scaling relation given by equation (4). The estimate ofD2 from C(t) is shown in the
inset of figure 1. We findD2 = 1.7 which is significantly smaller than the spatial dimension
3, demonstrating that the wave function at the transition is not at all similar to a typical
extended wave function. This value is consistent with the recent estimate ofD2 for layered
systems in high magnetic fields [27].

3.2. Conductance distribution

In a d-dimensional hypercubic lattice, the dimensionless conductanceg is defined as

g = G

e2/h
= σLd−2

e2/h
. (12)
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From the Landauer formula [28], we have

g = tr tt † (13)

where t is the transmission matrix. The matrixt is obtained by iteratively calculating the
Green function [29].

In 3D metallicL × L × L systems, the conductance distribution functionP(g) is the
normal distribution, the mean of which,〈g〉, is proportional to the sizeL. The variance,
on the other hand, is universal, a phenomenon which is known as universal conductance
fluctuations [30]. In the insulating regime,P(g) is log–normal.

Figure 2. The distribution function of the logarithm of the conductanceg at the critical point.
Triangles (4), diamonds (♦), squares (�) and circles (◦) correspond toL = 8, 10, 12 and 14
for the random-phase hopping model, respectively. The histogram is for a system in uniform
magnetic fields.

At the Anderson transition, not only the variance but also the distribution function itself
becomes universal [9, 10, 31]. The resulting distribution function is plotted in figure 2 for
L = 8, 10, 12 and 14. We plotP(logg) instead ofP(g) to show more clearly the detail
of the distribution function. The histogram is for the uniform magnetic field while the dots
are for the random-phase hopping model. The critical disorderWc depends on the strength
of the field and how we break the time-reversal symmetry (i.e., with a uniform magnetic
field or random-phase hopping). Nevertheless,P(logg) at the critical points is universal.

Once the system is away from the critical point, theP(g) begins to show size dep-
endence. To demonstrate this size dependence, we plotP(logg) in vanishing field away
from criticality atW = 17.5 in figure 3. This value of the disorder is about 6% larger than
Wc(B = 0) = 16.5. We can see subtle but clear size dependence ofP(g).

Similar behaviour of the conductance distribution is also observed in the layered system
in high magnetic fields, though in this model the system is highly anisotropic and the form
of Pc(g) is different [32].

4. Summary and concluding remarks

In this paper we have discussed several features of the Anderson transition which are related
to the self-similarity of the eigenstates at the critical point. The fractal dimensionality of
these critical eigenstates is almost half the original space dimension,≈1.7. The square
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Figure 3. The distribution function of the logarithm of the conductanceg when the strength of
the disorder is slightly larger than the critical valueWc. Triangles (4), diamonds (♦), squares
(�) and circles (◦) again correspond toL = 8, 10, 12 and 14, respectively.

diffusion length r2(t) has been shown to grow ast2/3 in the non-interacting model,
irrespective of the values of the critical exponents. At the transition, the distribution function
of the conductanceP(g) becomes model and size independent. The distribution function
of g close to AT had been recently obtained experimentally [33], and is consistent with our
results. Such universality of the distribution is also seen in the statistics of the energy levels
at the transition [11–15].

We have also seen that the layered system in perpendicular magnetic fields shows
interesting transport properties. The critical behaviour of this system may still be the same
as that found in the tight-binding isotropic system.

In order to relate our results to experiments at finite temperatureT , we now discuss the
T -dependence of the conductivity,σ(T ). At finite temperature, the inelastic scattering time
τin and the inelastic scattering lengthlin are finite. In the metallic regime, they are related
by lin ∼ τ 1/2

in . At criticality, the diffusion is anomalous, and this becomes

lin ∼ τ ν/(s+2ν)
in . (14)

The effective diffusion coefficientDeff becomes

Deff ∼ l2in

τin
∼ τ−s/(s+2ν)

in (15)

leading to the conductivity at finite temperatureσ(T ):

σ(T ) ∼ T s/(s+2ν) (16)

where we have assumed thatτin ∼ 1/T . Settings = ν givesσ ∼ T 1/3 which is independent
of the values of the exponentss and ν. In the presence of electron–electron interaction,
relation (4) may no longer be valid and instead

s = (d − 2− θ)ν (17)

should be used [34]. This leads to the suggestion that the exponent of the temperature
dependence is different when the time-reversal symmetry is broken. In experiments [35],
the power 1/3 is widely observed. This means that even in the presence of electron–electron
interaction, the relations = ν may not be modified significantly.
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